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It is well-known that stand-alone inertial navigation systems (INS) have their

errors diverging with time. The traditional approach for solving such incovenience

is to resort to position and velocity aiding such as global navigation satellite sys-

tems (GNSS) signals. However, misalignment errors in such fusion architecture are

not observable in the absence of maneuvers. This investigation develops a novel

sighting device (SD) model for vision-aided inertial navigation for use in psi-angle

error based extended Kalman filtering by means of observations of a priori mapped

landmarks. Additionally, the psi-angle error model is revisited and an extended

Kalman filter datasheet-based tuning is explained. Results are obtained by com-

puter simulation, where an unmanned aerial vehicle flies a known trajectory with

inertial sensor measurements corrupted by a random constant model. Position and

velocity errors, misalignment, accelerometer bias, rate-gyro drift and GNSS clock

errors with respect to ground-truth are estimated by means of INS/GNSS/SD

fusion and tested for statistical consistency.

I. Introduction

Advances in microelectromechanical inertial sensors (MEMs) made low-cost inertial
navigation systems (INS) commercially available. On the other hand, their errors quickly
diverge with time and set an upper bound on the duration of autonomous operations
and thus such systems become improper for use in low-cost unmanned aerial vehicle
(UAV) missions. The traditional approach for solving such inconvenience is to resort to a
global navigation satellite system (GNSS) receiver as position and velocity aiding device.
Hence, INS/GNSS fusion yields bounded navigation errors. However, misalignment errors
in such fusion architecture are not observable in the absence of maneuvers [1, 2]. In the
light of such restriction, the present study develops a novel model for INS/GNSS and
sighting device (SD) integration for use in outdoor navigation with known landmarks.
In general, outdoor navigation in structured environments requires some sort of road-
following. Herein, a priori mapped landmarks are imaged by a camera and tracked in
the image plane to aid the INS.

An initial study on the matter was conducted in [3], which developed two distinct
strategies for INS/SD fusion by means of psi-angle error model [4] based extended Kalman
filtering (EKF). One of them is the inspiration for this paper and explores a relationship
between the INS errors and the position of a landmark in the field of view relative to
the line of sight (LOS) of the SD, after the latter is aimed at the assumed position of
the landmark. The shortcoming of such procedure is the restriction to have the camera
maintaining LOS pointing to the landmark. Such restriction has been recently overcome
by means of resorting to a generalized SD model in which the difference between measured
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and estimated positions of the tracked landmark in the plane of image are correlated with
INS errors [5].

However, the psi-angle error framework has received only a modicum of attention in
INS/SD integration [6] since [3]. The present investigation revisits such scheme, which
has proven sucessful for INS/GNSS fusion [7], by means of developing an INS/SD fusion
formulation within the psi-angle error based EKF framework.

Initially, the INS psi-angle error model is revisited, and a datasheet-based nominal
EKF tuning is explored alongside. Ultimately, an INS/GNSS/SD EKF-based fusion
strategy is proposed for the estimation of navigation and sensors errors, and evaluated
by means of Monte Carlo simulation and statistical consistency tests [8].

II. Reference frames and Earth model

Reference frames and the Earth model are here briefly discussed. The WGS-84 ellip-
soid has been used due to its accuracy and simplicity [9]. The local reference frames at
the true and computed positions differ [4], and are respectively denoted by T = {t̂1, t̂2, t̂3}
and C = {ĉ1, ĉ2, ĉ3} (see figure 1).

Figure 1. Illustration of true (P) and computed (C) positions; and platform (P), computed
(C) and true (T) reference frames.

Additionally, equally important frames are I, E, B and P , respectively, inertial, Earth-
fixed, vehicle body and platform coordinate systems. The latter is the local reference
frame computed by the inertial navigation system at its estimated position and affected
by attitude estimation errors [4].

III. Mathematical notation

The chosen notation [10] is illustrated by table 1.
Furthermore, the decomposition of a vector v ∈ R3 into its components in a R coor-

dinate system is denoted by means of the right subscript position, e.g.

vR =
(
vr1 vr2 vr3

)T
(1)
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Table 1. Kinematics notation

Notation Meaning

pX/Y Position of point X w.r.t. point Y

R INS position with respect to Earth centre

R̂INS INS-computed position with respect to Earth centre
e

R= v Terrestrial velocity
e

R̂INS= v̂INS INS-computed terrestrial velocity
ss

R Acceleration w.r.t. S reference frame

ωxy Angular velocity of X coordinate

frame w.r.t. Y frame

Asp Specific force

g(·) Earth gravity at designated point

DA
B Direction cosine matrix: rotates from A

coordinate frame into alignment with B frame

IV. Kalman filter formulation

For the purpose of EKF-based INS/GNSS/SD fusion, the INS psi-angle error, GNSS
receiver and camera linear models are outlined, i.e., linear state and covariance propaga-
tion and update are formulated.

A. INS psi-angle error model revisited

Consider strapdown accelerometers and rate-gyros measurements corrupted, respectively,
by unknown constant bias ∇ and drift ε, modelled as random normal variables with σ∇
and σε standard deviations. Additionally, additive zero-mean white additive noise ωaccel
and ωgyro are considered with σaccel and σgyro standard deviations. The measured specific
force Asp,m is given [4] by a rotation of Asp by the misalignment vector ψ (see figure 1)
from C to P reference frame, and biased by ∇ according to

Asp,m = ∇ +Asp −ψ ×Asp + ωaccel (2)

whereas [4]

Asp =
ii

R −g(R)−Ω× (Ω×R) (3)

and

Asp,m =
ii

R̂INS −g(R̂INS)−Ω× (Ω× R̂INS) (4)

where ψ, g(R), g(R̂INS), Ω, R, R̂INS denote, respectively, the misalignment rotation
vector from the computed to the platform reference frame, Earth gravity at the true
and computed positions, Earth angular velocity, and true and computed positions with
respect to the Earth centre.
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If δp and δv are defined as INS computed errors in position and velocity, i.e.,{
δp = R̂INS −R
δv = v̂INS − v

(5)

then equations 2, 3 and 4 imply

∇−ψ ×Asp + ωaccel =
ii

δp − [g(
ii

R̂INS)− g(R)]︸ ︷︷ ︸
δg

−Ω× (Ω× δp) (6)

which can be rewritten as

∇−ψ ×Asp + ωaccel =
( ie

δp +Ω×
i

δp
)
− δg −Ω× (Ω× δp) =

=
i

δv +Ω×
i

δp −δg −Ω× (Ω× δp) =
c

δv +ωci × δv + Ω× δv − δg (7)

Ultimately,

c

δv= δg − (2Ω + ωce)× δv +Asp ×ψ + ∇ + ωaccel (8)

On the other hand, the derivative of δp with respect to frame C yields

c

δp=
e

δp −ωce × δp = δv − ωce × δp (9)

Additionally, it can be shown that [4]

ε = −
i

ψ −ωgyro (10)

hence
c

ψ=
i

ψ −ωci ×ψ = −ε− (Ω + ωce)×ψ − ωgyro (11)

Finally, according to [4], assuming ∇B and εB are random constants, representing
vector equations 8, 9 and 11 in the C coordinate frame, and then employing the DB

P

estimated by the INS, the psi-angle-based INS error dynamics model is formulated as

δṗC = δvC − [ωceC ×]δpC (12)

δv̇C = δgC − [(2ΩC + ωceC )×]δvC + [DB
PAsp,m,B×]ψC +DB

P∇B +DB
Pωaccel,B (13)

ψ̇C = −[(ΩC + ωceC )×]ψC −DB
P εB −DB

Pωgyro,B (14)

∇̇B = 03×1 (15)

ε̇B = 03×1 (16)

where the notation [ζR×] means

[ζR×] =

 0 −ζr3 ζr2
ζr3 0 −ζr1
−ζr2 ζr1 0

 (17)
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and δgC is approximated by [11]

δgC =
geR

2
e

(Re + hc)3

−1

−1

2

 (18)

with ge and Re denoting, respectively, the gravity and the radius of the Earth as computed
with the WGS-84 Earth model, at the geographic location of the INS sensors, according
to [11]

Re = R0(1− esin2λc) (19)

and
ge = (1 + 0.0053sin2λc)g0 (20)

where R0, e, g0 and λc denote, respectively, the Earth equatorial radius, eccentricity and
equatorial gravity, and the INS-computed latitude. The Earth model parameters are
found in [9].

In the light of the foregoing development, it is convenient to define the EKF state
vector as

xEKF =
(
δpTC δvTC ψT

C ∇T
B εTB c∆t

)T
(21)

where c∆t denotes the random constant GNSS clock error model with σc∆t standard
deviation, whose compensation is fundamental in INS/GNSS integration [11].

The zero-order hold (ZOH) discretization of equations 12, 13, 14, 15 and 16 yields the
error-state transition matrix Fk and process noise covariance Qk for the EKF. In practice,
the discretization which yields Qk is [12]

Qk = Gk

[
σ2
accelI3×3 03×3

03×3 σ2
gyroI3×3

]
∆tGT

k (22)

where

Gk =


03×3 03×3

DB
P 03×3

03×3 −DB
P

07×3 07×3

 (23)

and ∆t denotes the discretization sample time. Finally, EKF tuning is addressed with
inertial sensors’ datasheet specifications.

B. GNSS tightly coupled integration

GNSS integration equations are listed in the following without further explanations due to
the broad extension of available literature on the matter [7]. Integration is performed in
a tightly coupled architecture involving pseudorange and deltarange measurements. For
each satellite Si, pseudorange and deltarange innovations are incorporated by means of
equations 24 and 25, where ûi denotes the estimated line-of-sight (LOS) unit vector from
the user’s receiver antenna to satellite Si. Pseudorange and deltarange measurements are
corrupted by additive Gaussian noise ωSi,p ∼ N(0, σp) and ωSi,v∼N(0, σv). The antenna
lever arm has been considered as exactly compensated. Furthermore, GNSS clock error
dynamics is modelled according to equation 26. In practice, a more complex model that
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accounts for clock drift should be implemented [7]. However, for the sake of simplicity,
the present work implements a simpler model and focuses on camera integration.

pSi/P − pSi/C = ûi · δp+ c∆t+ ωSi,p (24)

e
p
Si/P

−
e
p
Si/C

= ûi · δv + ωSi,v (25)

d

dt
c∆t = 0 (26)

C. Sighting device

As previously stated, the basic idea of the proposed INS/SD fusion architecture is based
upon tracking mapped landmarks Li ∈ L, i = 1..Nl, each one with a priori known LLA
coordinates (latitude, longitude, altitude). For each Li, its position with respect to the
camera V , pLi/V , (see figure 2) is described in the V coordinate frame as [5]

p
Li/V
V = DB

V [DT
BD

E
T (pLi

E − p
P
E)− pV/PB ] (27)

Figure 2. Perspective projection geometry in the plane of image. Adapted from [5].

The camera V is assumed installed next to the inertial sensors’ position P and has
its axes aligned according to figure 3, thus

p
Li/V
V = DB

VD
T
BD

E
T (pLi

E − p
P
E) (28)

Hence the adimensional normalized measurementa zLi
= (wi, hi) provided by the

camera is given by

zLi
= Π

p
Li/V
V[

1 0 0
]
· pLi/V

V

+ ωcam (29)

aIt is assumed, without loss of generality, camera focal length f = 1.
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Figure 3. Definition of camera coordinate system (top view).

where ωcam ∈ M(R)2×1 is white gaussian noise with standard deviation σcam, and Π is
defined by

Π =

[
0 1 0

0 0 1

]
(30)

ωcam shall be modelled to account for uncertainties in target tracking algorithms,
servomechanism control and misalignment between camera and vehicle bodyb. The es-
timated normalized measurement vector is estimated by means of the navigation algo-
rithm [13] computed variables (i.e., position, velocity and attitude) by

ẑLi
= Π

p
Li/C
Vc[

1 0 0
]
· pLi/C

Vc

(31)

where Vc is the computed camera reference frame. Similarly to equation 28, p
Li/C
Vc

is
expressed as

p
Li/C
Vc

= DBc
Vc
DC
Bc
DE
C (pLi

E − p
C
E) (32)

The orientation of the camera V in relation to the vehicle body B is assumed known
with great accuracy, thus DVc

Bc
= DV

B . In addition, notice that INS attitude estimates are

employed and thus follows the approximation DBc
C ≈ DB

P . In this scope, equation 32 can
be rewritten as

p
Li/C
Vc

= DB
VD

P
BD

E
C (pLi

E − p
C
E) (33)

Notice that all terms in the right-hand side of equation 33 are available from INS
navigation algorithm and ẑLi

can be readily computed. For use in the EKF, the difference
rLi

= zLi
− ẑLi

, and how it relates to navigation errors, is explored in the following.
It has been assumed that rLi

is function solely of δp and ψ, disregarding electrooptical

distortions in the sighting device. Hence, the Jacobian J =
∂rLi

∂x
is in the sparse form

J = −
[
∂ẑLi

∂δpC
02×3

∂ẑLi

∂ψC
02×7

]
(34)

bServomechanism control and misalignment between camera and vehicle body errors usually cannot
be accurately modelled as white gaussian noise hence inflation in Kalman filter noise covariance statistics
should take place in practice
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First,
∂ẑLi

∂δpC
is calculated noticing that equation 33 can be rewritten as

p
Li/C
VC

= DB
VD

P
BD

E
C (pLi

E − p
C
E) = DB

V (DT
BD

C
TD

P
C)(DT

CD
E
T )(pLi

E − p
C
E) ≈

≈ DB
VD

T
B(I3×3 + [ψC×])DE

T (pLi
E − p

C
E) = DB

VD
T
B(I3×3 + [ψC×])DE

T (pLi
E − p

P
E − δpE) =

= DB
VD

T
BD

E
T (pLi

E −p
P
E)+DB

VD
T
B[ψC×]DE

T (pLi
E −p

P
E)−DB

VD
T
B(I3×3 +[ψC×])DE

TD
C
EδpC ≈

≈ pLi/V
V +DB

VD
T
B[ψC×]DE

T (pLi
E − p

P
E)−DB

VD
T
B(I3×3 + [δθC×])δpC ≈

≈ pLi/V
V +DB

VD
T
B[ψC×]DE

T (pLi
E − p

P
E)−DB

VD
T
BδpC (35)

Therefore, considering the partial derivative
∂ẑLi

∂δpC
at point ψC = 0, above equations

deliver
p
Li/C
VC

= p
Li/V
V −DB

VD
T
BδpC (36)

For the computation of
∂ẑLi

∂pC
, ẑLi

is rewritten as

ẑLi
=

(
z1

z2

)
, z1 =

z1,num

zden
,

z2,num

zden
(37)

z1,num =
[
0 1 0

]
(p

Li/V
V −DB

VD
T
BδpC) (38)

z2,num =
[
0 0 1

]
(p

Li/V
V −DB

VD
T
BδpC) (39)

zden =
[
1 0 0

]
(p

Li/V
V −DB

VD
T
BδpC) (40)

Hence,

∂ẑLi

∂δpC
=

[
∂z1
∂δpc1

∂z1
∂δpc2

∂z1
∂δpc3

∂z2
∂δpc1

∂z2
∂δpc2

∂z2
∂δpc3

]
(41)

where
∂zk
∂δpcj

=
1

z2
den

(
zden

∂zk,num
∂δpcj

− zk,num
∂zden
∂δpcj

)
,

k = 1..2

j = 1..3
(42)

and 
∂z1,num

∂δpc1
∂z2,num

∂δpc1
∂zden
∂δpc1

 = −

0 1 0

0 0 1

1 0 0

DB
VD

T
B

1

0

0

 (43)


∂z1,num

∂δpc2
∂z2,num

∂δpc2
∂zden
∂δpc2

 = −

0 1 0

0 0 1

1 0 0

DB
VD

T
B

0

1

0

 (44)


∂z1,num

∂δpc3
∂z2,num

∂δpc3
∂zden
∂δpc3

 = −

0 1 0

0 0 1

1 0 0

DB
VD

T
B

0

0

1

 (45)

Above computations deliver the first 2×3 block of the Jacobian in equation 34. Simi-
larly, for the computation of the remaining nonzero block, notice that the ψ misalignment
affects the camera measurement (for small angles) according to

p
Li/C
VC

= p
Li/V
V +DB

VD
T
B[ψC×]DE

T (pLi
E − p

P
E) (46)
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By means of equation 46 and the same strategy used for the computation of the
Jacobian with respect to position, follows

ẑLi
=

(
γ1

γ2

)
, γ1 =

γ1,num

γden
, γ2 =

γ2,num

γden
(47)

γ1,num =
[
0 1 0

]
(p

Li/V
V +DB

VD
T
B[ψC×]DE

T (pLi
E − p

P
E)) (48)

γ2,num =
[
0 0 1

]
(p

Li/V
V +DB

VD
T
B[ψC×]DE

T (pLi
E − p

P
E)) (49)

γden =
[
1 0 0

]
(p

Li/V
V +DB

VD
T
B[ψC×]DE

T (pLi
E − p

P
E)) (50)

∂ẑLi

∂ψC
=

[
∂γ1
∂ψc1

∂γ1
∂ψc2

∂γ1
∂ψc3

∂γ2
∂ψc1

∂γ2
∂ψc2

∂γ2
∂ψc3

]
(51)

∂γk
∂ψcj

=
1

γ2
den

(
γden

∂γk,num
∂ψcj

− γk,num
∂γden
∂ψcj

)
,

k = 1..2

j = 1..3
(52)


∂γ1,num

∂ψc1
∂γ2,num

∂ψc1
∂γden
∂ψc1

 =

0 1 0

0 0 1

1 0 0

DB
VD

P
B

0 0 0

0 0 −1

0 1 0

DE
Cp

Li/C
E (53)


∂γ1,num

∂ψc2
∂γ2,num

∂ψc2
∂γden
∂ψc2

 =

0 1 0

0 0 1

1 0 0

DB
VD

P
B

 0 0 1

0 0 0

−1 0 0

DE
Cp

Li/C
E (54)


∂γ1,num

∂ψc3
∂γ2,num

∂ψc3
∂γden
∂ψc3

 =

0 1 0

0 0 1

1 0 0

DB
VD

P
B

0 −1 0

1 0 0

0 0 0

DE
Cp

Li/C
E (55)

Above computations deliver the Jacobian J which quantitatively describes how navi-
gation errors affect camera pointing and is used as sensor model in the extended Kalman
filter.

rLi
= JxEKF + ωcam (56)

V. Simulation results

Consider a simulated scenario where an unmanned aerial vehicle (UAV), initially
positioned at LLA = (0, 0, 100m), equipped with 3-axis sensitive triads of strapdown rate-
gyros and accelerometers, a GNSS receiver and a camera flies a trajectory with cruising
speed 300m/s toward North and altitude 100m. Sensors specifications are illustrated by
table 2.

GNSS/SD updates were made at 100ms intervals. After the instant t = 5sec, EKF
estimated navigation variables and sensors errors are used for in-flight correction of the
INS computed position, velocity and attitude and to calibrate the inertial sensors and
GNSS receiver clock error. INS correction is of utmost importance in such systems due
to the linearization of the INS error dynamics at the computed INS navigation solution.
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Table 2. Sensors Imperfections

INS σaccel σ∇ σgyro σε
1mg 25mg 1o/h 25o/h

GNSS/SD σc∆t σv σp σcam
300m 0.01m/s 15m 0.01

With respect to the INS navigation algorithm, [13] and [14] provide cost-effective
multiple-rate integration methods to compute position and velocity, and attitude, re-
spectively. However, such algorithms incur in errors in position, velocity and attitude,
commonly known in the literature as scrolling, sculling [16] and coning [15]. Scrolling
errors added to the position channel process noise (see equation 22) precludes EKF op-
timality, and hence ad-hoc Qk inflation takes place in the following manner

Qk ← Qk + 10−1∆t

[
I3×3 03×13

013×3 013×13

]
(57)

On top of that, the initial extended Kalman filter covariance matrix P (0|0) is also
inflated. Such procedure is commonplace in real applications since initial errors are often
not known. This practice yields a non-optimal pessimist filter initiation which can be
detected by substantial differences in root mean squared (RMS) estimation and EKF
computed covariance during the KF’s early working stages as can be seen later on.

The impact of the number of available landmarks on INS/GNSS/SD system perfor-
mance will be evaluated by comparing single-sided and double-sided observation scenar-
ios. Only one landmark update is made at each updating step of the EKF. In the case
of single-sided observations, only landmark L1 is considered in the filter update. In the
double-sided observation mode, L1 and L2 are alternately available for the update stage.
Landmarks are defined in table 3. The vehicle’s trajectory and the observed landmarks
are illustrated in figure 4.

Table 3. Landmarks Position Coordinates

Landmark Latitude (deg) Longitude (deg) Altitude (m)

1 10−2 50× 10−1 10

2 50× 10−1 10−2 10

For the sake of simplicity, constant visibility to 4 GNSS satellites is assumed, each
with a fixed position with respect to Earth during the simulation time interval. LLA
satellite coordinates are given in table 4.

The evaluation of INS/GNSS/SD fusion algorithm performance with single or double-
sided observations is based on a Monte Carlo simulation [8] with 50 realizations and
two statistical tests. These are the normalized estimation error squared (NEES) and
normalized innovation squared (NIS), which are described in [8] and used hereafter with
a 5% alarm rate. The number of realizations is chosen so that a balance between reliable
statistical study and practicable simulation time is obtained.
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Figure 4. Vehicle trajectory and landmark positions (top view).

Table 4. GNSS Satellites Position Coordinates

Satellite Latitude (deg) Longitude (deg) Altitude (km)

1 20 −20 20, 000

2 40 −20 20, 000

3 −30 40 20, 000

4 −25 30 20, 000

A. Single-sided observations

Figure 5 displays INS/GNSS/SD fusion with single-sided observations EKF computed
covariances and root mean squared (RMS) estimation errors (denoted by δp̃, δṽ, ψ̃, ∇̃,
ε̃ and c∆t̃) for each component of xEKF . Additionally, NEES and NIS consistency tests
are shown with the corresponding alarm limits.

Notice, in sharp contrast with INS/GNSS fusion, the observability of ψc1 and ψc3
without resorting to maneuvers. Notwithstanding, ψc2 is weakly observable due to land-
mark L1 location East of the vehicle. It is, indeed, intuitive to expect the inadequacy
of sighting devices to yield attitude information about the LOS axis due to the assumed
punctual nature of the landmark projection on the image plane. Similarly, ∇b1 is weakly
observable.

B. Double-sided observations

Figure 6 displays INS/GNSS/SD fusion with double-sided observations EKF computed
covariances and RMS estimation errors for each component of xEKF . Additionally, NEES
and NIS consistency tests are shown with the corresponding alarm limits.

The addition of a geometrically favorable landmark, namely L2, positioned North of
the vehicle, enhances ψc2 and ∇b1 observability. Thus, the RMS error quickly diminishes
and filter tuning is accomplished as far as the NEES and NIS tests can evaluate.

Furthermore, this work suggests as future work further investigation on the impact of
number and geometry of landmarks on Kalman filter observability, which can be analyt-
ically performed in a fashion similar to [1, 2].
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Figure 5. EKF computed covariances, RMS estimation errors and consistency tests for
INS/GNSS/SD single-sided observations.

As a last remark, the EKF process noise in the position channel must be inflated
according to equation 57 to accomplish NEES and NIS statistical consistency. Otherwise,
the resulting small EKF computed covariance and the corresponding RMS error become
statistically inconsistent, which may render the estimation process unreliable. The tuning
of the position channel noise to reach statistical consistency in the NEES test can be
addressed by self-tuning algorithms [17,18].
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Figure 6. EKF computed covariances, RMS estimation errors and consistency tests for
INS/GNSS/SD double-sided observations.

VI. Conclusions

An imaging measurement model is formulated for use in a psi-angle error based ex-
tended Kalman filter (EKF) that yields the fusion of global navigation satellite observ-
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ables with vision-aided inertial navigation. At first, the EKF uses datasheet-based nom-
inal tuning and the estimation performance is evaluated by means of Monte Carlo simu-
lation. The resulting performance motivates the use of a process noise inflation scheme
to attain statistical consistency. Position and velocity errors, misalignment, accelerom-
eter bias, rate-gyro drift and GNSS clock errors with respect to ground-truth are then
effectively estimated and pass the tests for statistical consistency. Ultimately, in-flight
INS correction and the calibration of inertial sensors and GNSS receiver clock error are
successfully accomplished.
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321


